Linee di prodotti software
(Software Product Lines)

Ferruccio Damiani

www.di.unito.it/~damiani

Tre mattine all'Universita’

Torino, 27 febbraio 2012

Introduction

System Diversity

Systems exist in different variants to adapt to their application
context.

XpressMusic

XpressMusic

MNokia 5310 > Hokia 5610 > Nokia N95 8GB Nokia Ng1 BGB

Introduction

System Diversity

Systems exist in different variants to adapt to their application
context.

Mercedes-Benz Deutschland - Konfigurator - Konfigurator S-Klas:

Mercedes-Benz

.‘

Introduction

Variety of Variants

Variants are a significant key to business success.
- Franz Decker, Head of Program Variant Management, BMW Group

Example: BMW X3
3.000 different doors, 324 different rear axles, ...

Introduction

What is a “Software Product Line"?

Product Line

A family of products designed to take advantage of their common
aspects and predicted variabilities.

@ Don't want to build these programs from scratch

@ Want to automate the design and development of SPL
programs

e requires: a design for a program family, not a design for a
single program

o very common (and becoming more common) problem

Introduction

What is a “Software Product Line"?

Product Line
A family of products designed to take advantage of their common
aspects and predicted variabilities.

@ Industrial-scale Approach for Reuse in Software Engineering

@ Members of Product Line Hall of Fame: HP, Ericsson, Nokia,
GM Powertrain, Boeing, Bosch, Lucent, Philips, Toshiba, ...

o Commercially successful, e.g., HP Owen Firmware
Cooperative: 1/4 of the staff, 1/3 of the time, and 1/25 of
the bugs (compared to previous single application engineering)

Introduction
Outline
@ Features

@ Feature Oriented Software Development (FOSD)

@ Software Product Line Engineering (SPLE)

Delta Oriented Programming (DOP)

Future Work

Features

Feature Model (FM)

© It defines the products of a (software) product line

e Kyo Kang, et al 1990

o hierarchically arranged set of features

e particular (S)PL products are expressed as unique sets of
features

@ It is the most important representation of a product-line
e it is the master plan or master design of an (S)PL

© FMs allow users to specify products declaratively

e when coupled with implementations, products can be
synthesized and downloaded to customers in minutes

Examples of On-Line PLs

@ Build your own car
http://www.fiat.it/modelli

@ Build your own desktop
http://www.dell.com /it/p/desktop-deals

Features

Feature Diagram (FD)

It is a standard notations for a feature model

@ a FD is a tree

@ leaves are primitive features

@ internal nodes are compound features

@ parent-child are containment relationships

CrJiée Engine Transmission CarBody

7,
\/ \\
) PPN
/ /

Gasoline Electric Manual | = Automatic

Features

Feature Diagram (FD)

mandatory: features that are required e
optional: features that are optional o

and: all subfeatures (children) are selected
alternative: only 1 subfeature can be selected
or: at least 1 subfeatures must be selected

Car
B : —and" .
Cruise Engine Transmission | CarBody
‘ i <{__>_ alternative

choose1

Gasoline Electric Manual @ Automatic

FOSD

Why Feature Oriented Software Development (FOSD) 7

Present functionality in an understandable way (good
marketing)

Controls complexity

@ Allows customization

@ Economical to realize

@ Amortize development costs for additional functionality

FOSD
Methodology for Construction

What Comp. Sci. methodology builds systems by incrementally
adding details?

FOSD

Methodology for Construction

What Comp. Sci. methodology builds systems by incrementally
adding details?

@ Stepwise Refinement
o Dijkstra, Wirth early 1970s
e abandoned in early 1980s as it didn't scale...

@ had to compose hundreds or thousands of transformations to
produce admittedly small programs

FOSD

Methodology for Construction

What Comp. Sci. methodology builds systems by incrementally
adding details?

@ Stepwise Refinement

o Dijkstra, Wirth early 1970s
e abandoned in early 1980s as it didn't scale...

@ had to compose hundreds or thousands of transformations to
produce admittedly small programs

@ Stepwise Development

e program transformations correspond to adding (or removing)
features

@ so that composing a few of them yields an entire system

FOSD

Terminology disclaimer!

FOSD

Terminology disclaimer!

Refinement: process of adding implementation detail without

changing semantics
winterfaces
Int1

Class1

FOSD

Terminology disclaimer!

Refinement: process of adding implementation detail without

changing semantics
winterfaces
Int1

1

1

1
Class1

Extension: process of adding details to augment or extend
semantics/capabilities

Class winterfacen
Int1

SubClass winterfaces
Int11

Software Product Line Engineering (SPLE)

Feature |—> Family Engineering
Model

\ 4

Product Line
Artifacts Base

! !

Feature
Configuration

Application Engineering t+=>{ Product

Automatic SPLE

Feature [—>
Model

\ 4

Feature
Configuration

Family Engineering

Product Line
Artifacts Base

!

Automated Product Derivation

—>

Product

Programming SPLs

Single and multiple class-based inheritance inappropriate as

a reuse mechanism

Programming SPLs

Single and multiple class-based inheritance inappropriate as

a reuse mechanism

@ Class-based inheritance does not support low-coupling (Fragile
Base Class Problem [Mikhajlow and Sekerinsky, ECOOP
1998])

Programming SPLs

Single and multiple class-based inheritance inappropriate as

a reuse mechanism

@ Class-based inheritance does not support low-coupling (Fragile
Base Class Problem [Mikhajlow and Sekerinsky, ECOOP
1998])

o Classes play two competing roles ([Scharli et al., ECOOP
2003, TOPLAS 2006])

Programming SPLs

Single and multiple class-based inheritance inappropriate as

a reuse mechanism

@ Class-based inheritance does not support low-coupling (Fragile
Base Class Problem [Mikhajlow and Sekerinsky, ECOOP
1998])

o Classes play two competing roles ([Scharli et al., ECOOP
2003, TOPLAS 2006])

Generator of instances
Must provide a complete set of basic features

Programming SPLs

Single and multiple class-based inheritance inappropriate as

a reuse mechanism

@ Class-based inheritance does not support low-coupling (Fragile
Base Class Problem [Mikhajlow and Sekerinsky, ECOOP
1998])

o Classes play two competing roles ([Scharli et al., ECOOP
2003, TOPLAS 2006])

Generator of instances
Must provide a complete set of basic features

Should provide a minimal set of basic features which can sensibly
be combined together

Programming SPLs

Annotative vs Compositional approaches

@ Annotative approaches

Conditional compilation (e.g., C preprocessor’s fifdef)
Frames

Colored Integrated Development Environment (CIDE)

Programming SPLs

Annotative vs Compositional approaches

@ Annotative approaches

Conditional compilation (e.g., C preprocessor’s fifdef)
Frames

Colored Integrated Development Environment (CIDE)

o Compositional approaches
Mixins

Traits

Aspects

Feature modules

Delta modules

Delta-oriented Programming (DOP)

® Connection between
. Delta Modules and
Product Line Product Features

Declaration
® Order of Delta
Module Application

Code
Base

[Schaefer et al., SPLC 2010; Schaefer and Damiani, FOSD 2010; Schaefer et al., AOSD 2011]

DOP

Product Generation in Delta-oriented Product Lines

Given a given feature configuration:

© determine delta modules with valid application condition

@ apply the changes specified by delta modules

e to the empty program

e according to the delta module application ordering

DOP

Product Generation in Delta-oriented Product Lines

Given a given feature configuration:

© determine delta modules with valid application condition

@ apply the changes specified by delta modules

e to the empty program

e according to the delta module application ordering

DELTAJ, a language for DOP (deltaj.sourceforge.net/)

Example: Expression Product Line (EPL)

Feature Model of EPL:

Expression Product Line

N

Data Operations
Pl NV
Lit| [Add| |Neg Print| [Eval

Delta Modules for EPL

delta DLit{
adds interface Exp {

}

adds class Lit implements Exp {
int value;
Lit(int n) { value = n; }

}

}

delta DLitPrint{
modifies interface Exp { adds String toString();
}
modifies class Lit {

adds String toString() { return value; }
}
}

delta DLitEval{
modifies interface Exp { adds int eval();
}
modifies class Lit {
adds int eval() { return value; }

}

Delta Modules for EPL (2)

delta DAdd {
adds class Add implements Exp {
Exp expril;
Exp expr2
Add(Exp a, Exp b) { exprl = a; expr2 = b;}
}

delta DAddPrint{
modifies class Add {
adds String toString() { return exprl + " + " + expr2; }

delta DAddEval{
modifies class Add {
adds int eval() { return exprl.eval() + expr2.eval(); }

}

Delta Modules for EPL (3)

delta DNeg{
adds class Neg implements Exp {
Exp expr;
Neg(Exp a) { expr = a; }
}
}

delta DNegPrint{
modifies class Neg {
adds String toString() { return "-" + expr; }
}
}

delta DNegEval{
modifies class Neg {
adds int eval() { return -1 * expr.eval(); }
}
}

delta DAddNegPrint {
modifies class Add {
modifies toString { return "(" + original + ")"; }

}

Product Line Declaration for EPL

features Lit, Add, Neg, Print, Eval
configurations Lit & Print

deltas
[DLit,
DAdd when Add,
DNeg when Neg]

[DLitPrint,
DLitEval when Eval,
DAddPrint when Add,
DAddEval when (Add & Eval),
DNegPrint when Neg,
DNegEval when (Neg & Eval)]

[DAddNegPrint when (Add & Neg) 1

Product for Features Lit, Add, Neg, Print

interface Exp { adds String toString();
}

class Lit implements Exp {
int value;
Lit(int n) { value = n; }
String toString() { return value; }

}

class Add implements Exp {
Exp expri;
Exp expr2

Add(Exp a, Exp b) { exprl = a; expr2 = b;}
String toString() { return "(" + exprl + " + " + expr2 + ")"; } }

}
class Neg implements Exp {
Exp expr;
Neg(Exp a) { expr = a; }
String toString() { return "-" + expr; }

}

Software Product Line Engineering (SPLE)

Delta-oriented Programming supports

@ Proactive SPLE: All products are planned in advance
@ Extractive SPLE: Start from existing products

@ Reactive SPLE: Evolve product line, when new features arise

Extractive Development of EPL

features Lit, Add, Neg, Print, Eval
configurations Lit & Print

deltas
[DLitNegPrint when ('Add & Neg)] /* Existing product */

[DLitAddPrint when (Add | !Neg)] /* Existing product */

[DNeg when (Add & Neg),
DremAdd when ('Add & !Neg)] /* Feature removal */

[DNegPrint when (Add & Neg),
DLitEval when Eval,
DAddEval when (Add & Eval),
DNegEval when (Neg & Eval)]

[DAddNegPrint when (Add & Neg)]

Evolution of EPL

Feature model for Evolved EPL:

Expression Product Line

PN

Data Operations

— L /

Lit| [Add|||Neg| |Sub Print| { |Eval

Reactive Development of EPL

features Lit, Add, Neg, Sub, Print, Eval
configurations Lit & Eval & choosel(Neg,Sub)

deltas
[DLit,
DAdd when Add,
DNeg when Neg,
DSub when Sub /* new delta module */]

—

DLitPrint when Print,

DLitEval,

DAddPrint when (Add & Print),

DAddEval when Add,

DNegPrint when (Neg & Print),

DNegEval when Neg,

DSubPrint when (Sub & Print), /* new delta module */
DSubEval when Sub /* new delta module */]

[DAddNegPrint when (Add & (Neg | Sub) & Print)]

Type-checking of Delta-oriented SPLs

Unambiguity

A SPL is unambiguous if for each valid feature configuration
exactly one product is generated.

Type-safety

A SPL is type safe if all its products are well-typed programs.

Naive approach:

@ Generate all the products

@ Type check each product separately

Problems:
@ Infeasible for large product lines

@ Difficult to trace errors to delta modules

Requirements for DOP Type System

@ Check type safety without generating the products
@ Report errors in code of delta modules

© Analyze each delta module in isolation (reusability)

Future work

Future work

@ Case studies

@ Extending the theory
o SPLs testing
e SPLs of verified programs

e Dynamic SPLs

	Introduction
	Features
	FOSD
	SPLE
	Programming SPLs
	DOP
	Future work

