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Introduction

Variety of Variants

Variants are a significant key to business success.
- Franz Decker, Head of Program Variant Management, BMW Group

Example: BMW X3
3.000 different doors, 324 different rear axles, ...




Introduction

What is a “Software Product Line"?

Product Line

A family of products designed to take advantage of their common
aspects and predicted variabilities.

@ Don't want to build these programs from scratch

@ Want to automate the design and development of SPL
programs

e requires: a design for a program family, not a design for a
single program

o very common (and becoming more common) problem
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What is a “Software Product Line"?

Product Line
A family of products designed to take advantage of their common
aspects and predicted variabilities.

@ Industrial-scale Approach for Reuse in Software Engineering

@ Members of Product Line Hall of Fame: HP, Ericsson, Nokia,
GM Powertrain, Boeing, Bosch, Lucent, Philips, Toshiba, ...

o Commercially successful, e.g., HP Owen Firmware
Cooperative: 1/4 of the staff, 1/3 of the time, and 1/25 of
the bugs (compared to previous single application engineering)
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@ Features

@ Feature Oriented Software Development (FOSD)

@ Software Product Line Engineering (SPLE)

Delta Oriented Programming (DOP)

Future Work



Features

Feature Model (FM)

© It defines the products of a (software) product line

e Kyo Kang, et al 1990

o hierarchically arranged set of features

e particular (S)PL products are expressed as unique sets of
features

@ It is the most important representation of a product-line
e it is the master plan or master design of an (S)PL

© FMs allow users to specify products declaratively

e when coupled with implementations, products can be
synthesized and downloaded to customers in minutes



Examples of On-Line PLs

@ Build your own car
http://www.fiat.it/modelli

@ Build your own desktop
http://www.dell.com /it/p/desktop-deals



Features

Feature Diagram (FD)

It is a standard notations for a feature model

@ a FD is a tree

@ leaves are primitive features

@ internal nodes are compound features

@ parent-child are containment relationships
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Features

Feature Diagram (FD)

mandatory: features that are required e
optional: features that are optional o

and: all subfeatures (children) are selected
alternative: only 1 subfeature can be selected
or: at least 1 subfeatures must be selected

Car
B : —and" .
Cruise Engine Transmission | CarBody
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choose1
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FOSD

Why Feature Oriented Software Development (FOSD) 7

Present functionality in an understandable way (good
marketing)

Controls complexity

@ Allows customization

@ Economical to realize

@ Amortize development costs for additional functionality



FOSD
Methodology for Construction

What Comp. Sci. methodology builds systems by incrementally
adding details?
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FOSD

Methodology for Construction

What Comp. Sci. methodology builds systems by incrementally
adding details?

@ Stepwise Refinement

o Dijkstra, Wirth early 1970s
e abandoned in early 1980s as it didn't scale...

@ had to compose hundreds or thousands of transformations to
produce admittedly small programs

@ Stepwise Development

e program transformations correspond to adding (or removing)
features

@ so that composing a few of them yields an entire system



FOSD

Terminology disclaimer!
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Refinement: process of adding implementation detail without

changing semantics
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FOSD

Terminology disclaimer!

Refinement: process of adding implementation detail without

changing semantics
winterfaces
Int1

1

1

1
Class1

Extension: process of adding details to augment or extend
semantics/capabilities

Class winterfacen
Int1

SubClass winterfaces
Int11




Software Product Line Engineering (SPLE)

Feature |—> Family Engineering
Model
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Automatic SPLE
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Programming SPLs

Single and multiple class-based inheritance inappropriate as

a reuse mechanism

@ Class-based inheritance does not support low-coupling (Fragile
Base Class Problem [Mikhajlow and Sekerinsky, ECOOP
1998])

o Classes play two competing roles ([Scharli et al., ECOOP
2003, TOPLAS 2006])

Generator of instances
Must provide a complete set of basic features

Should provide a minimal set of basic features which can sensibly
be combined together




Programming SPLs

Annotative vs Compositional approaches

@ Annotative approaches

Conditional compilation (e.g., C preprocessor’s fifdef)
Frames

Colored Integrated Development Environment (CIDE)



Programming SPLs

Annotative vs Compositional approaches

@ Annotative approaches

Conditional compilation (e.g., C preprocessor’s fifdef)
Frames

Colored Integrated Development Environment (CIDE)

o Compositional approaches
Mixins

Traits

Aspects

Feature modules

Delta modules



Delta-oriented Programming (DOP)

® Connection between
. Delta Modules and
Product Line Product Features

Declaration
® Order of Delta
Module Application

Code
Base

[Schaefer et al., SPLC 2010; Schaefer and Damiani, FOSD 2010; Schaefer et al., AOSD 2011]



DOP

Product Generation in Delta-oriented Product Lines

Given a given feature configuration:

© determine delta modules with valid application condition

@ apply the changes specified by delta modules

e to the empty program

e according to the delta module application ordering



DOP

Product Generation in Delta-oriented Product Lines

Given a given feature configuration:

© determine delta modules with valid application condition

@ apply the changes specified by delta modules

e to the empty program

e according to the delta module application ordering

DELTAJ, a language for DOP ( deltaj.sourceforge.net/ )



Example: Expression Product Line (EPL)

Feature Model of EPL:

Expression Product Line

N

Data Operations
Pl NV
Lit| [Add| |Neg Print| [Eval




Delta Modules for EPL

delta DLit{
adds interface Exp {

}

adds class Lit implements Exp {
int value;
Lit(int n) { value = n; }

}

}

delta DLitPrint{
modifies interface Exp { adds String toString();
}
modifies class Lit {

adds String toString() { return value; }
}
}

delta DLitEval{
modifies interface Exp { adds int eval();
}
modifies class Lit {
adds int eval() { return value; }

}



Delta Modules for EPL (2)

delta DAdd {
adds class Add implements Exp {
Exp expril;
Exp expr2
Add(Exp a, Exp b) { exprl = a; expr2 = b;}
}

delta DAddPrint{
modifies class Add {
adds String toString() { return exprl + " + " + expr2; }

delta DAddEval{
modifies class Add {
adds int eval() { return exprl.eval() + expr2.eval(); }

}



Delta Modules for EPL (3)

delta DNeg{
adds class Neg implements Exp {
Exp expr;
Neg(Exp a) { expr = a; }
}
}

delta DNegPrint{
modifies class Neg {
adds String toString() { return "-" + expr; }
}
}

delta DNegEval{
modifies class Neg {
adds int eval() { return -1 * expr.eval(); }
}
}

delta DAddNegPrint {
modifies class Add {
modifies toString { return "(" + original + ")"; }

}



Product Line Declaration for EPL

features Lit, Add, Neg, Print, Eval
configurations Lit & Print

deltas
[ DLit,
DAdd when Add,
DNeg when Neg ]

[ DLitPrint,
DLitEval when Eval,
DAddPrint when Add,
DAddEval when (Add & Eval),
DNegPrint when Neg,
DNegEval when (Neg & Eval) ]

[ DAddNegPrint when (Add & Neg) 1



Product for Features Lit, Add, Neg, Print

interface Exp { adds String toString();
}

class Lit implements Exp {
int value;
Lit(int n) { value = n; }
String toString() { return value; }

}

class Add implements Exp {
Exp expri;
Exp expr2

Add(Exp a, Exp b) { exprl = a; expr2 = b;}
String toString() { return "(" + exprl + " + " + expr2 + ")"; } }

}
class Neg implements Exp {
Exp expr;
Neg(Exp a) { expr = a; }
String toString() { return "-" + expr; }

}



Software Product Line Engineering (SPLE)

Delta-oriented Programming supports

@ Proactive SPLE: All products are planned in advance
@ Extractive SPLE: Start from existing products

@ Reactive SPLE: Evolve product line, when new features arise



Extractive Development of EPL

features Lit, Add, Neg, Print, Eval
configurations Lit & Print

deltas
[ DLitNegPrint when ('Add & Neg) ] /* Existing product */

[ DLitAddPrint when (Add | !Neg) ] /* Existing product */

[ DNeg when (Add & Neg),
DremAdd when ('Add & !Neg) ] /* Feature removal */

[ DNegPrint when (Add & Neg),
DLitEval when Eval,
DAddEval when (Add & Eval),
DNegEval when (Neg & Eval) ]

[ DAddNegPrint when (Add & Neg) ]



Evolution of EPL

Feature model for Evolved EPL:

Expression Product Line

PN

Data Operations

— L /

Lit| [Add|||Neg| |Sub Print| { |Eval




Reactive Development of EPL

features Lit, Add, Neg, Sub, Print, Eval
configurations Lit & Eval & choosel(Neg,Sub)

deltas
[ DLit,
DAdd when Add,
DNeg when Neg,
DSub when Sub /* new delta module */ ]

—

DLitPrint when Print,

DLitEval,

DAddPrint when (Add & Print),

DAddEval when Add,

DNegPrint when (Neg & Print),

DNegEval when Neg,

DSubPrint when (Sub & Print), /* new delta module */
DSubEval when Sub /* new delta module */ ]

[ DAddNegPrint when (Add & (Neg | Sub) & Print) ]



Type-checking of Delta-oriented SPLs

Unambiguity

A SPL is unambiguous if for each valid feature configuration
exactly one product is generated.

Type-safety

A SPL is type safe if all its products are well-typed programs.

Naive approach:

@ Generate all the products

@ Type check each product separately

Problems:
@ Infeasible for large product lines

@ Difficult to trace errors to delta modules



Requirements for DOP Type System

@ Check type safety without generating the products
@ Report errors in code of delta modules

© Analyze each delta module in isolation (reusability)



Future work

Future work

@ Case studies

@ Extending the theory
o SPLs testing
e SPLs of verified programs

e Dynamic SPLs



	Introduction
	Features
	FOSD
	SPLE
	Programming SPLs
	DOP
	Future work

