
Introduction Features FOSD SPLE Programming SPLs DOP Future work

Linee di prodotti software
(Software Product Lines)

Ferruccio Damiani

www.di.unito.it/˜damiani

Tre mattine all’Universita’

Torino, 27 febbraio 2012

Introduction Features FOSD SPLE Programming SPLs DOP Future work

System Diversity

Systems exist in different variants to adapt to their application
context.

Introduction Features FOSD SPLE Programming SPLs DOP Future work

System Diversity

Systems exist in different variants to adapt to their application
context.

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Variety of Variants

Variants are a significant key to business success.
- Franz Decker, Head of Program Variant Management, BMW Group

Example: BMW X3
3.000 different doors, 324 different rear axles, ...

Introduction Features FOSD SPLE Programming SPLs DOP Future work

What is a “Software Product Line”?

Product Line

A family of products designed to take advantage of their common
aspects and predicted variabilities.

1 Don’t want to build these programs from scratch

2 Want to automate the design and development of SPL
programs

requires: a design for a program family, not a design for a
single program

very common (and becoming more common) problem

Introduction Features FOSD SPLE Programming SPLs DOP Future work

What is a “Software Product Line”?

Product Line

A family of products designed to take advantage of their common
aspects and predicted variabilities.

Industrial-scale Approach for Reuse in Software Engineering

Members of Product Line Hall of Fame: HP, Ericsson, Nokia,
GM Powertrain, Boeing, Bosch, Lucent, Philips,Toshiba, ...

Commercially successful, e.g., HP Owen Firmware
Cooperative: 1/4 of the staff, 1/3 of the time, and 1/25 of
the bugs (compared to previous single application engineering)

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Outline

Features

Feature Oriented Software Development (FOSD)

Software Product Line Engineering (SPLE)

Delta Oriented Programming (DOP)

Future Work

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Feature Model (FM)

1 It defines the products of a (software) product line

Kyo Kang, et al 1990
hierarchically arranged set of features
particular (S)PL products are expressed as unique sets of
features

2 It is the most important representation of a product-line

it is the master plan or master design of an (S)PL

3 FMs allow users to specify products declaratively

when coupled with implementations, products can be
synthesized and downloaded to customers in minutes

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Examples of On-Line PLs

Build your own car

http://www.fiat.it/modelli

Build your own desktop

http://www.dell.com/it/p/desktop-deals

...

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Feature Diagram (FD)

It is a standard notations for a feature model

a FD is a tree
leaves are primitive features
internal nodes are compound features
parent-child are containment relationships

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Feature Diagram (FD)

mandatory: features that are required •
optional: features that are optional ◦
and: all subfeatures (children) are selected
alternative: only 1 subfeature can be selected
or: at least 1 subfeatures must be selected

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Why Feature Oriented Software Development (FOSD) ?

Present functionality in an understandable way (good
marketing)

Controls complexity

Allows customization

Economical to realize

Amortize development costs for additional functionality

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Methodology for Construction

What Comp. Sci. methodology builds systems by incrementally
adding details?

Stepwise Refinement

Dijkstra, Wirth early 1970s
abandoned in early 1980s as it didn’t scale...

had to compose hundreds or thousands of transformations to
produce admittedly small programs

Stepwise Development
program transformations correspond to adding (or removing)
features

so that composing a few of them yields an entire system

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Methodology for Construction

What Comp. Sci. methodology builds systems by incrementally
adding details?

Stepwise Refinement

Dijkstra, Wirth early 1970s
abandoned in early 1980s as it didn’t scale...

had to compose hundreds or thousands of transformations to
produce admittedly small programs

Stepwise Development
program transformations correspond to adding (or removing)
features

so that composing a few of them yields an entire system

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Methodology for Construction

What Comp. Sci. methodology builds systems by incrementally
adding details?

Stepwise Refinement

Dijkstra, Wirth early 1970s
abandoned in early 1980s as it didn’t scale...

had to compose hundreds or thousands of transformations to
produce admittedly small programs

Stepwise Development
program transformations correspond to adding (or removing)
features

so that composing a few of them yields an entire system

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Terminology disclaimer!

Refinement: process of adding implementation detail without
changing semantics

Extension: process of adding details to augment or extend
semantics/capabilities

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Terminology disclaimer!

Refinement: process of adding implementation detail without
changing semantics

Extension: process of adding details to augment or extend
semantics/capabilities

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Terminology disclaimer!

Refinement: process of adding implementation detail without
changing semantics

Extension: process of adding details to augment or extend
semantics/capabilities

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Software Product Line Engineering (SPLE)

Pure Delta-oriented Programming

Family Engineering

Application Engineering

Product Line
Artifacts Base

Feature
Model

Feature
Configuration

Product

Product Line Development

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Automatic SPLE

Pure Delta-oriented Programming

Family Engineering

Product Line
Artifacts Base

Feature
Model

Feature
Configuration

ProductAutomated Product Derivation

Product Line Development

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Single and multiple class-based inheritance inappropriate as
a reuse mechanism

Class-based inheritance does not support low-coupling (Fragile
Base Class Problem [Mikhajlow and Sekerinsky, ECOOP
1998])

Classes play two competing roles ([Schärli et al., ECOOP
2003, TOPLAS 2006])

Generator of instances

Must provide a complete set of basic features

Unit of reuse

Should provide a minimal set of basic features which can sensibly
be combined together

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Single and multiple class-based inheritance inappropriate as
a reuse mechanism

Class-based inheritance does not support low-coupling (Fragile
Base Class Problem [Mikhajlow and Sekerinsky, ECOOP
1998])

Classes play two competing roles ([Schärli et al., ECOOP
2003, TOPLAS 2006])

Generator of instances

Must provide a complete set of basic features

Unit of reuse

Should provide a minimal set of basic features which can sensibly
be combined together

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Single and multiple class-based inheritance inappropriate as
a reuse mechanism

Class-based inheritance does not support low-coupling (Fragile
Base Class Problem [Mikhajlow and Sekerinsky, ECOOP
1998])

Classes play two competing roles ([Schärli et al., ECOOP
2003, TOPLAS 2006])

Generator of instances

Must provide a complete set of basic features

Unit of reuse

Should provide a minimal set of basic features which can sensibly
be combined together

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Single and multiple class-based inheritance inappropriate as
a reuse mechanism

Class-based inheritance does not support low-coupling (Fragile
Base Class Problem [Mikhajlow and Sekerinsky, ECOOP
1998])

Classes play two competing roles ([Schärli et al., ECOOP
2003, TOPLAS 2006])

Generator of instances

Must provide a complete set of basic features

Unit of reuse

Should provide a minimal set of basic features which can sensibly
be combined together

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Single and multiple class-based inheritance inappropriate as
a reuse mechanism

Class-based inheritance does not support low-coupling (Fragile
Base Class Problem [Mikhajlow and Sekerinsky, ECOOP
1998])

Classes play two competing roles ([Schärli et al., ECOOP
2003, TOPLAS 2006])

Generator of instances

Must provide a complete set of basic features

Unit of reuse

Should provide a minimal set of basic features which can sensibly
be combined together

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Annotative vs Compositional approaches

Annotative approaches

Conditional compilation (e.g., C preprocessor’s]ifdef)
Frames
Colored Integrated Development Environment (CIDE)
...

Compositional approaches

Mixins
Traits
Aspects
Feature modules
Delta modules
...

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Annotative vs Compositional approaches

Annotative approaches

Conditional compilation (e.g., C preprocessor’s]ifdef)
Frames
Colored Integrated Development Environment (CIDE)
...

Compositional approaches

Mixins
Traits
Aspects
Feature modules
Delta modules
...

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Delta-oriented Programming (DOP)

[...]Delta

Module1

Delta

Modulen

Code
Base

Product Line
Declaration

Connection between
Delta Modules and
Product Features

Order of Delta
Module Application

[Schaefer et al., SPLC 2010; Schaefer and Damiani, FOSD 2010; Schaefer et al., AOSD 2011]

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Product Generation in Delta-oriented Product Lines

Given a given feature configuration:

1 determine delta modules with valid application condition

2 apply the changes specified by delta modules

to the empty program

according to the delta module application ordering

DeltaJ, a language for DOP (deltaj.sourceforge.net/)

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Product Generation in Delta-oriented Product Lines

Given a given feature configuration:

1 determine delta modules with valid application condition

2 apply the changes specified by delta modules

to the empty program

according to the delta module application ordering

DeltaJ, a language for DOP (deltaj.sourceforge.net/)

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Example: Expression Product Line (EPL)

Feature Model of EPL:

Lit Eval

Data

Add Neg Print

Expression Product Line

Operations

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Delta Modules for EPL
delta DLit{

adds interface Exp {

}

adds class Lit implements Exp {

int value;

Lit(int n) { value = n; }

}

}

delta DLitPrint{

modifies interface Exp { adds String toString();

}

modifies class Lit {

adds String toString() { return value; }

}

}

delta DLitEval{

modifies interface Exp { adds int eval();

}

modifies class Lit {

adds int eval() { return value; }

}

}

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Delta Modules for EPL (2)

delta DAdd {

adds class Add implements Exp {

Exp expr1;

Exp expr2

Add(Exp a, Exp b) { expr1 = a; expr2 = b;}

}

}

delta DAddPrint{

modifies class Add {

adds String toString() { return expr1 + " + " + expr2; }

}

delta DAddEval{

modifies class Add {

adds int eval() { return expr1.eval() + expr2.eval(); }

}

}

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Delta Modules for EPL (3)
delta DNeg{

adds class Neg implements Exp {

Exp expr;

Neg(Exp a) { expr = a; }

}

}

delta DNegPrint{

modifies class Neg {

adds String toString() { return "-" + expr; }

}

}

delta DNegEval{

modifies class Neg {

adds int eval() { return -1 * expr.eval(); }

}

}

delta DAddNegPrint {

modifies class Add {

modifies toString { return "(" + original + ")"; }

}

}

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Product Line Declaration for EPL

features Lit, Add, Neg, Print, Eval

configurations Lit & Print

deltas

[DLit,

DAdd when Add,

DNeg when Neg]

[DLitPrint,

DLitEval when Eval,

DAddPrint when Add,

DAddEval when (Add & Eval),

DNegPrint when Neg,

DNegEval when (Neg & Eval)]

[DAddNegPrint when (Add & Neg)]

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Product for Features Lit, Add, Neg, Print

interface Exp { adds String toString();

}

class Lit implements Exp {

int value;

Lit(int n) { value = n; }

String toString() { return value; }

}

class Add implements Exp {

Exp expr1;

Exp expr2

Add(Exp a, Exp b) { expr1 = a; expr2 = b;}

String toString() { return "(" + expr1 + " + " + expr2 + ")"; } }

}

class Neg implements Exp {

Exp expr;

Neg(Exp a) { expr = a; }

String toString() { return "-" + expr; }

}

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Software Product Line Engineering (SPLE)

Delta-oriented Programming supports

Proactive SPLE: All products are planned in advance

Extractive SPLE: Start from existing products

Reactive SPLE: Evolve product line, when new features arise

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Extractive Development of EPL

features Lit, Add, Neg, Print, Eval

configurations Lit & Print

deltas

[DLitNegPrint when (!Add & Neg)] /* Existing product */

[DLitAddPrint when (Add | !Neg)] /* Existing product */

[DNeg when (Add & Neg),

DremAdd when (!Add & !Neg)] /* Feature removal */

[DNegPrint when (Add & Neg),

DLitEval when Eval,

DAddEval when (Add & Eval),

DNegEval when (Neg & Eval)]

[DAddNegPrint when (Add & Neg)]

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Evolution of EPL

Feature model for Evolved EPL:

Pure Delta-oriented Programming

Product Line Evolution

13

!feature ϕ {cd rcd}" =
delta ϕ { adds cd !rcd" }

!refines class C extending C { fd; md rmd }" =
modifies C extending C { adds fd adds md !rmd" }

!refines ms {s; Super(); s; return y;}" =
modifies ms {s; original(); s; return y;}

Figure 4. Translation of a feature module to a delta module

feature ϕ and a set of class definitions cd and class refinement
definitions rcd. Class definitions are given according to the syntax
of LJ. A class refinement definition can change the superclass, add
fields fd, provide new method definitions md and refine existing
method definitions rmd. A method refinement can wrap the existing
method body using the Super() construct.

A feature module table FMT is a mapping from feature names
to feature module definitions. A LFJ product line can be described
by a 3-tuple L = (FMT,Φ,<FMT) consisting of:

1. a feature module table FMT with a feature module for each
feature of the SPL,

2. the set of the valid feature configurations Φ⊆P(dom(FMT)),
3. a total order <FMT on the set of features dom(FMT).

The product associated to a feature configuration ψ is gener-
ated by composing (see Section 3.1 of [13]) the feature modules
associated to the features in ψ according to the total order <FMT.
During feature module composition, newly defined classes, fields
and methods are added and class and method refinements are car-
ried out. According to [13], a LFJ product line is type-safe if all
generated products are well-typed LJ programs.

4.2 Mapping LFJ into LP∆J
A product line in FOP can be represented as a product line in Pure
DOP. The set of features and the set of valid feature configurations
in both product lines is the same. Every feature module in a LFJ
product line is mapped to a delta module where additions are
translated to adds clauses and refinements to modifies clauses. The
application condition of the delta module denotes all configurations
in which the respective feature is contained. The ordering of delta
module application is the total ordering of the feature modules.

Formally, the mapping from LFJ product lines to LP∆J prod-
uct lines is defined as follows: for a LFJ product line L =
(FMT,Φ,<FMT), !L" denotes the corresponding LP∆J product
line (ϕ,Φ,DMT,Γ,<DMT) where
• ϕ = dom(FMT) = dom(DMT),
• The delta module table DMT is obtained by translating each

feature module in FMT to a delta module with the same name,
according to the clauses in Figure 4,

• Γ : dom(DMT)→Φ, where Γ(ϕ) = {ψ | ψ ∈Φ and ϕ ∈ ψ},
• <DMT is the total order on {{ϕ} | ϕ ∈ ϕ} defined by:

{ϕ1} <DMT {ϕ2} if and only if ϕ1 <FMT ϕ2.

The following theorem states that the LP∆J product lines gen-
erates the same products as the LFJ product line. Hence, Pure DOP
is a true generalization of FOP.

THEOREM 4.1. If L is a type safe LFJ product line, then !L" is
a type safe LP∆J product line such that, for every valid feature
configuration ψ , the product for ψ generated by L is the same as
the product for ψ generated by !L".

Although it is possible in principle to encode FOP in Core DOP,
a straightforward embedding as for Pure DOP is not possible. This

Lit Eval

Data

Add Neg Print

Expression Product Line

Operations

Sub

Figure 5. Feature model for evolved Expression Product Line

is because a feature-oriented SPL may have several base feature
modules, while Core DOP requires exactly one core module as
starting point for product generation.

5. Pure DOP for Product Line Development
Pure DOP supports proactive, extractive and reactive product line
development [22]. In the proactive approach, the scope of the prod-
uct line, i.e., the set of products to be developed, is analyzed before-
hand. All reusable artifacts are planned and developed in advance.
The example for Pure DOP presented in Section 2 can be seen as
proactive product line development, since we start from the feature
model defining the scope of the product line and develop delta mod-
ules and a Pure DOP SPL for these products. However, proactive
development requires a high upfront investment to define the scope
of the product line and to develop reusable artifacts.

Hence, in order to reduce the adoption barrier for product line
engineering, Krueger [22] proposes the usage of reactive and ex-
tractive approaches. In reactive product line engineering, only a ba-
sic set of products is developed. When new customer requirements
arise, the existing product line is evolved. The extractive approach
allows turning a set of existing legacy application into a product
line. Development starts with the existing products from which the
other products of the product line are derived.

FOP [7, 13] supports proactive product line development well.
However, since feature modules are restricted to add or refine
existing classes, FOP does not support extractive development and
only partially supports reactive development. It is not possible to
start from an existing legacy application comprising a larger set
of features and to remove features. Moreover, in order to deal with
new requirements following the reactive approach, feature modules
might have to be refactored to remove functionalities. Also, in Core
DOP, extractive product line development is not straight forward,
since one product has to be chosen as designated core product. In
contrast, Pure DOP is flexible and expressive enough to cover all
three product line engineering approaches directly.

5.1 Reactive Product Line Engineering
In reactive product line engineering, development starts with an
initial product line that is evolved in order to deal with changing
customer requirements. Consider as initial product line the example
depicted in Listing 5. Assume now that a new feature Sub should
be introduced for representing subtraction expressions. In the new
EPL, the Sub feature should be an alternative to the Neg feature.
Additionally, the Print feature should become optional and the Eval
feature mandatory. The feature diagram for the evolved product line
is given in Figure 5.

In order to realize the new Sub feature, we have to add delta
modules that introduce the corresponding data structure for sub-
traction and the associated print and the evaluation functionalities.
The respective delta modules are shown in Listing 6. The specifi-
cation for the evolved SPL is shown in Listing 7, where the op-
erator choose1(P1, . . . ,Pn) means at most one of the propositions
P1, . . . ,Pn is true (see [5]).

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Reactive Development of EPL

features Lit, Add, Neg, Sub, Print, Eval

configurations Lit & Eval & choose1(Neg,Sub)

deltas

[DLit,

DAdd when Add,

DNeg when Neg,

DSub when Sub /* new delta module */]

[DLitPrint when Print,

DLitEval,

DAddPrint when (Add & Print),

DAddEval when Add,

DNegPrint when (Neg & Print),

DNegEval when Neg,

DSubPrint when (Sub & Print), /* new delta module */

DSubEval when Sub /* new delta module */]

[DAddNegPrint when (Add & (Neg | Sub) & Print)]

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Type-checking of Delta-oriented SPLs

Unambiguity

A SPL is unambiguous if for each valid feature configuration
exactly one product is generated.

Type-safety

A SPL is type safe if all its products are well-typed programs.

Naive approach:

Generate all the products

Type check each product separately

Problems:

Infeasible for large product lines

Difficult to trace errors to delta modules

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Requirements for DOP Type System

1 Check type safety without generating the products

2 Report errors in code of delta modules

3 Analyze each delta module in isolation (reusability)

Introduction Features FOSD SPLE Programming SPLs DOP Future work

Future work

Case studies

Extending the theory

SPLs testing

SPLs of verified programs

Dynamic SPLs

...

	Introduction
	Features
	FOSD
	SPLE
	Programming SPLs
	DOP
	Future work

